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Abstract

The use of neural networks in classification tasks is very common. They are

frequently taught on a training set that is typically quite large by optimizing a

probabilistic learning criterion, such as likelihood. Researchers have optimized

the architecture and the learning strategy for good generalization in terms of

classification accuracy. Accurate probability predictions are required when the

probabilistic output of the trained classifier is used in a downstream decision

problem. The probabilistic predictions, however, are frequently unreliable and even

deceptive, for example, overconfidence of the classifier relative to the actual error

rate. Utilizing a small dataset while having the knowledge of the test task and

test conditions, we are capable of updating the model for an improved performance.

In the work, we give an overview of such model updates and propose new loss

functions, namely Direct Loss and Integral Loss that allow for improvements in

a more specialized manner based on the test task. We show the performance of

these loss functions in combinations with certain calibration parametrizations on

number of realistic experiments, which include non 0/1 loss matrices and prior shift

adaptation.

Keywords Probability Calibration, Neural Networks, Classification, Decision-

making, Confident Predictions





Abstrakt

Použit́ı neuronových śıt́ı v klasifikačńıch úlohách je velmi běžné. Často se vyučuj́ı na

tréninkové sadě, která je obvykle poměrně velká, optimalizaćı pravděpodobnostńıho

učebńıho kritéria, jako je věrohodnost. Výzkumńıci optimalizovali architekturu

a strategii učeńı pro dobrou generalizaci z hlediska přesnosti klasifikace. Přesné

predikce pravděpodobnosti jsou vyžadovány, když je pravděpodobnostńı výstup

trénovaného klasifikátoru použit v následném rozhodováńı. Pravděpodobnostńı

predikce jsou však často nespolehlivé a dokonce klamavé, např́ıklad př́ılǐsně velké

sebevědomı́ klasifikátoru vzhledem ke skutečné chybovosti. S využit́ım malé

datové sady a znalosti testovaćı úlohy a testovaćıch podmı́nek jsme tedy schopni

aktualizovat model pro lepš́ı výkon. V této práci dáváme přehled takových

aktualizaćı model̊u a navrhujeme nové ztrátové funkce, jmenovitě Direct Loss a

Integral Loss, které umožňuj́ı vylepšeńı specializovaněǰśım zp̊usobem na základě

požadavk̊u během testováńı. Ukážeme výkon těchto ztrátových funkćı v kombinaci

s určitými kalibračńımi parametrizace na řadě realistických experiment̊u, které

zahrnuj́ı non 0/1 ztrátové matice a změnu apriorńıch pravědpodobnost́ı.

Kĺıčová slova Kalibrace pravděpodobnost́ı, Neuronové śıtě, Klasifikace,

Rozhodováńı, Věrohodné predikce
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Chapter 1

Introduction

1.1 Motivation

The reliability of probabilistic forecasters has its roots mainly in meteorology.

Consider the following example: One would anticipate that, out of all days with

a 25% probability of rain, around a quarter would be rainy and the rest to differ.

The predictor is considered to be calibrated if all predictions show this to be the

case. Even while we would prefer for the forecaster to be accurate, if that is not

possible, we would nevertheless wish for it to be calibrated – that is, to properly

reflect what it does not know. Wanting a good predictive model to make accurate

predictions in proportion to its level of confidence is clearly justifiable, however,

many models do not have this fundamental property (Niculescu-Mizil & Caruana

2005; Platt et al. 1999). Many downstream layers / decision-makers that build upon

these miscalibrated models will, as a result, make inaccurate decisions. In safety-

critical domains like medical diagnosis, autonomous driving etc. the effects of an

overconfidently wrong decision can be devastating, implying that we are in need to

calibrated predictive models.

Calibration in Deep learning

As deep learning gains on popularity, especially in fields like computer vision as

they dominate the field regarding their performance, naturally we are to question

whether the deep learning classifiers are calibrated. Even the simple most confident

prediction calibration, that is making the prediction with the highest probability

reflect the knowledge of the model, is currently not easy to achieve, as we have

not designed a unified and general measure of calibration (Nixon et al., 2019). We

seem to come to a disagreement on whether neural networks are calibrated or not.

1



1.1. MOTIVATION

Firstly, we are told that neural networks are reasonably calibrated in (Niculescu-

Mizil & Caruana, 2005), followed by (Guo et al., 2017), where the authors say that

many deep neural networks are not calibrated and then in (Minderer et al., 2021) we

are told that they are. Tackled by (Carrell et al., 2022), it is said that there seems

to be a general disagreement in the approach how calibration is measured as deep

neural networks are still a large category containing convolutional neural networks,

transformers, etc..

Refined notions of calibration

First calibration notions were discussed in (Murphy & Winkler 1987; DeGroot

& Fienberg 1981; Bröcker 2009), performance functions were presented as a

decomposition that included both uncertainty and reliability – i.e. how reliable

one was during the evaluation of the performance. With the possible downfalls

of reliability, calibration theory developed into the many notions that we have.

While many applications are concerned with calibrating only the most confident

prediction (Zadrozny & Elkan 2002; Guo et al. 2017), in many tasks we require all the

predictions to be calibrated – distribution calibration as mentioned in (Vaicenavicius

et al. 2019). Discussed in (Widmann et al. 2019; Zhao et al. 2021), achieving this

type of calibration is a eminently difficult, demanding an unreasonably large amount

of data proportionally to the number of classes.

Calibration Methods

Calibration is done mainly using some kind of parametrization or by transforming

the predicted probabilities into the calibrated probabilities. The latter’s most

known approach is to fit a function using isotonic regression (Niculescu-Mizil

& Caruana, 2005). Parametrization involves learning some parameters that are

somehow combined with the output logits with the goal that the resulting probability

will be calibrated. Here, the most famous parametrization is Temperature Scaling

(Guo et al., 2017), which learns a single parameter T > 0 that subsequently divides

the logits of the neural network. Some other parametrizations include Platt Scaling

or Bias-Corrected Temperature Scaling (Platt et al. 1999; Alexandari et al. 2020).

Calibration has also been approached in different stages of the training. The most

widely used approach is the so-called post-hoc calibration, where the calibration is

done for a given blackbox probabilistic predictor (Zadrozny & Elkan 2002; Guo et al.

2017; Zhao et al. 2021; Sahoo et al. 2021; Platt et al. 1999). Further, there have

been experiments to calibrate during the training stage, i.e. train a better calibrated

predictor Kumar et al. (2018).

2



1.2. DIFFERENT PROBLEM SETUPS

Role of Downstream Tasks

Assuming there would be a method to help us achieve calibrated predictions, besides

having reliable outputs, we would also be capable of solving other ensuing tasks, e.g.

decision-making under non-0/1 loss functions (Zhao et al., 2021) or predictions under

distributions different from the training data – dataset shifts. These have been

tackled by e.g. using the (uncalibrated) predictions to estimate the dataset shift

(Alexandari et al. 2020; Sipka et al. 2021; Pampari & Ermon 2020) or by simulating

many dataset shifts and calibrating with respect to the augmented dataset (Tomani

et al., 2021). To the same end, one might want to calibrate the probabilistic outputs

so that the main goal will be to improve the performance under a dataset shift or

making a decision under a different loss instead of reflecting the true reliability.

1.2 Different problem setups

Let us first discuss several circumstances where the predictive probabilities rather

than merely classification decisions are significant before concentrating on the

specific issues that the thesis addresses. Additionally, we are not interested in

calibration for the sake of calibration in this work; rather, we are interested in

calibration to enhance performance in downstream tasks. In order to examine

practical use cases where probabilistic predictions might be improved or rectified,

we want to investigate when they can be deceptive for certain activities. We restrict

the discussion to models trained for classification.

1.2.1 How Misleading Probabilistic Predictions (Lack of

Calibration) Can Impact Downstream Tasks

• A decision is made after interpreting the probability of the predicted class as

confidence (e.g., class ”apple,” 80% confidence) (e.g. decide whether the result

is trustworthy for further processing or should be skipped or more observations

should be acquired). Confidence is vital for safety-sensitive applications.

• The classification accuracy as a Key Performance Indicator (KPI) is frequently

used to refine and choose the best models. If alternative circumstances arise

at test time, such as a shift in class priors (prior shift), the accuracy may

significantly decline. A probabilistic predictor can be readily adapted to

the new priors when the test time priors are known, but if the predicted

probabilities are off, this approach may fail (or incur a performance cost). The

probabilities of all classes count in this situation, as opposed to the scenarios
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discussed before, when only the confidence of the anticipated (most probable)

class mattered. Particularly, their estimated probability must be in the proper

odds for correct performance as unusual classes grow more prevalent.

• A decision system based on probabilistic predictors is used to suggest a course

of therapy or a different diagnosis once the test data, such as clinical data,

is provided. In the future, the whole cost of the therapy will be disclosed

(after more information about each case is gradually collected). The ability to

predict the activities’ anticipated costs in advance is crucial. It is extremely

undesirable when the actual costs consistently end up being substantially

greater than those predicted. Correctly estimating the likelihood of making

mistakes, with a focus on those that result in high costs, is necessary to

accurately predict projected treatment costs.

• In a situation requiring cost-sensitive decision making, the trained predictor

is employed. Adopting a trained probabilistic predictor for a given cost (loss)

matrix is simple when utilizing the Bayesian optimal strategy. When opposed

to identifying the most likely state and deciding in light of it, the costs may

underline the significance of certain sorts of errors and significantly influence

the decisions. However, because this technique uses all predicted probabilities,

it could not work well if the probabilities are off.

1.2.2 When Probabilistic Predictions Can Become Mislead-

ing

• As a result of overfitting the models during training.

• The predictor performance may significantly deteriorate if the appearance of

the classes changes (prior shift) or even if a greater qualitative change in

the input occurs (out of domain samples). Methods for tackling classifier

adaptation exist, however, it is not guaranteed that they will ensure reliable

probabilistic predictions.

• As a result of some perturbations, e.g. slight adversarial perturbations can

turn over the predictions with a high confidence.

1.2.3 How We Can Improve Calibration

• Trained predictors that generalize well with negative log-likelihood are often

better calibrated. Large-scale supervised training or large-scale self-supervised
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training, as well as fine-tuning for the target dataset, are common training

methods that are costly. The accuracy is the KPI in supervised training, and

the training processes are optimized for greater generalization. It is preferable

to avoid complete retraining since in this situation, since the reliability of

predicted probabilities is a secondary aim.

• One can learn a parametric or non-parametric correction of the probabilistic

predictor using a trained model and an independent validation (calibration)

labeled dataset. We will refer to this as post-hoc calibration (or post-training

re-calibration). It is unclear what calibration criteria are pertinent and how to

assess and compare calibration procedures if one does not know why calibration

is required. Because of this, we must make some extra assumptions about

the downstream task, at least for the purposes of assessing and contrasting

calibrating approaches.

1.2.4 Scenarios we Focus on

Based on the aforementioned study, we find two crucial downstream tasks that are

impacted by calibration: prior shift adaptation and Bayesian decision making in a

cost-sensitive environment, with the first issue being more general. We note the

following situations as being of practical concern:

• At the time of calibration, the cost matrix or a prior shift is already known.

The objective is to change the predictor’s predictive probabilities so that the

risk (expected cost) of the predictions is reduced.

• At calibration time, the loss matrix is known for one scalar parameter. For

instance, we may be aware of a state’s hazard and high cost of error, but the

precise amount of this cost won’t be known until a test. Another illustration is

confidence calibration, where it is known that at test time a recognition with

a reject option will be employed, but the rejection cut-off cost is unknown in

advance.

• At calibration time, prior shift is known for one scalar parameter. Possible

examples include the linear interpolation of the priors between two known

distributions in one dimension (e.g. between two different seasons, or two

different geographical locations). Another frequent scenario is when someone

has a long-tailed training and calibration data but wants to get a high

performance (accuracy) for both the original data and data with uniformly

distributed classes (emphasizing the performance on rare classes). In this
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instance, we may think of the long-tailed distribution and the uniform

distribution of priors as a convex 1-parameter family.

• It is assumed that the loss matrix or a prior shift belongs to a more general set

that is defined at calibration time. The use cases stated above are obviously

expanded by this.

1.3 Objectives

In this thesis, we try to calibrate our predictions for a specific downstream decision-

maker, taking inspiration from (Zhao et al., 2021). We study different notions of

calibration, measures of miscalibration, including hypothesis testing. Further, we

note that most neural networks are optimized using the cross-entropy loss, which is

used because of it’s nice properties as a surrogate to the 0/1 loss (Bartlett et al.,

2006). However, many tasks do not have a 0/1 loss. Because of that, many new

approaches for such tasks are being developed. One of which would be the calibration

for decision-making, where one would try to calibrate so that the new predictions

take into account the non–0/1 loss. Unlike (Zhao et al., 2021), where the calibration

is done with respect to a set of losses, we try to calibrate with respect to a specific

loss matrix. To achieve that, we took inspiration from (Song et al., 2016), where a

form of direct empirical risk minimization was formed. From that, we designed a loss

criterion referred to as Direct Loss. Further, we also propose another loss criterion

referred to as Integral Loss, which allows to optimize for a convex combination of

two loss matrices. We explain our thought process of the derivation of the criterions,

derive some of the theoretical properties, and experimentally show the performance.

1.4 Thesis structure

In chapter 2 we provide an overview of the technical background knowledge

concerning the notation, the different calibration strategies and methods. Chapter

3 includes our new proposed loss criterions and explains them and the motivation

behind them. Chapter 4 then describes and discusses the experiments performed

using our new loss criterions and the current existing loss criterions (e.g. Negative

Log-likelihood, followed up by a discussion of the results. Finally, we end with the

concluding chapter 5, where we summarize the work we have done.
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Chapter 2

Background

In this chapter, we summarize the basic notations, definitions and concepts relevant

for our topic. For the sake of completeness, we also include topics that we do not

directly use, however are a good introduction into the topic of calibration for the

reader.

2.1 Probabilistic settings

Let {(Xi, Yi)}ni=1 be independent and identically distributed random variable pairs

from X × Y , where X is the input space and Y is the finite set of m class labels.

Consider ∆m = {x|x ∈ Rm
≥0 ∧ ||x||1 = 1} – in other words, the (m− 1)-dimensional

probability simplex. We then define our probabilistic model as g : X −→ ∆m. In

other words, for every input x, g outputs a probability vector that would reflect the

following meaning if it was perfectly calibrated:

(P[Y = 1 | X = x], . . . ,P[Y = m | X = x])

2.2 Classification

Consider having finite dataset τ coming from the distribution P (X, Y ).

Classification consists of learning a mapping f : X −→ Y , that is an assignment of a

class label to each input. This is often done in the way of predicting the probabilities

of each class label assignment, similarly to the definition of a probabilistic model g

defined above. From the predicted probabilities, one can have strategies to choose

the final predicted class label. The most widely used strategy is to take the class

with the highest probability. Thus, the learned mappings f make their prediction
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by predicting the most confident class using the probabilistic model g:

f(x) = argmax
y

gy(x).

From there, under the Empirical Risk Minimization (ERM) framework, one would

like to minimize the expected loss of the model, that is:

R(f) = E(x,y)∼P (X,Y )[l(f(x), y)], (2.1)

where l : Y × Y −→ R is a chosen loss function. Not having P (X, Y ), the standard

practice is to estimate the risk empirically, using an average over the data.

R̂(f) =
1

|τ |
∑

(x,y)∈τ

l(f(x), y). (2.2)

From there, if l is the 0/1 loss (matrix), i.e:

l(ŷ, y) =

0 y = ŷ (correct prediction)

1 y ̸= ŷ (wrong prediction)

we arrive at the widely used accuracy metric, i.e. the fraction of predictions the

model classified correctly.

In practice, the model g is parametrized with θ. These parameters θ are usually

estimated using the maximum likelihood estimate. Further, the 0/1 loss is not

tractable as it is not differentiable, thus surrogate losses are being used. Given the

surrogate loss, we expect the parameters θ to be statistically consistent, i.e. as the

number of the samples increases, θ will converge in probability to the true value.

Sadly, these parametrized models miss-specified in the sense that they are often not

in the hypothesis family of the task, as the dynamics of the real world tend to be

more complex. To overcome that, we tend to overparametrize the neural networks

and therefore cannot hope to rely on statistical consistency – as the number of

parameters increase, the sample size has to be even greater.

2.3 Neural Networks as probabilistic classifiers

Unsurprisingly, the concept of neural networks first emerged as a model of how

we thought brain neurons behave. This model, known as ”connectionism”, used

connected circuits to imitate intelligent behavior. Nowadays, neural networks
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have become the model of choice for classification in many domains, especially in

computer vision and natural language processing.

Neural networks as classifiers output a probability prediction vector p̂ for each input

x. The probability p̂ is computed as p̂ = σ(z), where the softmax function σ takes

the form of:

σ(z)k =
exp(zk)∑m
j=1 exp(zj)

, (2.3)

and z are called the logits of the network, i.e. the nonprobabilistic outputs of the

last layer before applying the softmax function. From there, the predicted class

label for a given probability prediction vector is computed as:

ŷ = argmax
k

p̂k. (2.4)

They are typically trained using gradient descent methods optimizing a certain loss

criterion. As equation (2.2) for the 0/1 loss is neither differentiable nor provides

informative gradients, we have to opt for different optimization criterions. For

classification, the standard loss function is the NLL. NLL takes as it’s input the

logits and the one hot encoded true label y and calculates the loss in the following

way:

NLL(y, z) = − log p̂y = −
m∑
k=1

yk log(σ(z)k). (2.5)

As yk ∈ {0, 1}, and y is a one hot encoded vector, the sum essentially finds the

correct label and the value − log(σ(z)k) is going to be the loss. We visualize the

NLL function compared to the 0/1 loss in figure 2.a. As the probability for the

correct class increases, the loss decreases and vice versa.

NLL comes from the maximum likelihood estimation principle, where one tends to

minimize the negative logarithm of the conditional probabilities given parameters.

Unlike the 0/1 loss, NLL is differentiable, convex and provides informative gradients.

Having a trained neural network, the outputs are interpreted as probabilities, even

though in many cases they are not, which causes problems in decision making in

downstream tasks, where the interpretability is an important factor. To that end,

the field of calibrating probabilistic outputs has been gaining popularity.
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Figure 2.a: The NLL function for different input probabilities of the true class in

a binary classification problem compared to the 0/1 loss. The x-axis shows the

probability of the true class and the y-axis shows the loss given the probability.

2.4 Calibration definitions

We summarize three different definitions of calibration. The first calibration

definition states that a model is calibrated if

P[Y = argmax g(X) | max g(X) = z] = z (2.6)

for z ∈ [0, 1], i.e. if the predicted probability most confident prediction is calibrated

then we say that the model is calibrated. To avoid confusion, if a model meets this

definition, we say that the model is confidence calibrated. Many works are concerned

only with this definition and call models that fulfill this definition as fully calibrated,

i.e. unaware of stronger definitions (Guo et al., 2017) as for 0/1 loss matrices, the

class with the highest probability is the best prediction. Note that it is sufficient to

supply predictions with a reliable confidence, which solves the issue of overconfident

wrong predictions.

A stronger definition discussed by (Zadrozny & Elkan, 2002) says it is also desired

that the predictions are calibrated in each of the classes, that is

P[Y = y | gy(X) = z] = z, (2.7)

for all y ∈ {1, 2, . . . ,m} and z ∈ [0, 1]. We call a model calibrated according to (2.7)

as class-wise calibrated.
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Lastly, the strongest definition considered in (Vaicenavicius et al., 2019) requires

that the distributions of target classes given an input is equal to the prediction.

Note, this definition was known much earlier in the forecasting literature (Bröcker,

2009). Mathematically, it reads as

P[Y = y | g(X) = p] = py, (2.8)

for all y ∈ {1, 2, . . . ,m} and p ∈ ∆m. We reference models calibrated according

to (2.8) as strongly calibrated or distribution calibrated. As one could guess,

conditioning on the whole probability vector makes the calibration process very

data demanding, since it is sensitive to hyperparameters such as the number of

bins, which will be explained later.

2.4.1 Toy example

As a toy example to grasp the notion of different calibration definitions we present an

example from (Vaicenavicius et al., 2019) in figure 2.b. Consider all the predictions

that our model outputs to be the left column of the table and the true conditional

distribution P[Y = y | g(X)] for y ∈ {1, 2, 3} as the second column. Then the

classifier g would be calibrated weakly, class-wise but not strongly.

g(X) P[Y = y | g(X)]

(0.1, 0.3, 0.6) (0.2, 0.2, 0.6)

(0.1, 0.6, 0.3) (0.0, 0.7, 0.3)

(0.3, 0.1, 0.6) (0.2, 0.2, 0.6)

(0.3, 0.6, 0.1) (0.4, 0.5, 0.1)

(0.6, 0.1, 0.3) (0.7, 0.0, 0.3)

(0.6, 0.3, 0.1) (0.5, 0.4, 0.1)

Figure 2.b: A toy example taken from (Vaicenavicius et al., 2019) for understanding

the calibration definitions. The right column is the true conditional distribution,

the left column is are the models predictions. Then g is calibrated by (2.6) and (2.7)

but not calibrated by (2.8).

2.5 Calibration measures

To measure calibration, consider the calibration function r : ∆m −→ ∆m as
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r(µ) = (P[Y = 1 | g(X) = µ], . . . ,P[Y = m | g(X) = µ]) (2.9)

for µ ∈ ∆m – that is, how µ would look if it were strongly calibrated. This implies

that a model g is strongly calibrated if

r(g(X))− g(X) = 0 (2.10)

This also tells us how much g(X) deviates from a perfectly calibrated model. A fair

remark is that although usually omitted, equalities for equations including random

variables have the meaning of being almost surely equal, i.e. equal with respect to the

events that are not of measure zero. Given a distance function d : ∆m×∆m −→ [0,∞)

the Expected Calibration Error (CE) is defined as

CEd = E[d(r(g(X)), g(X))]. (2.11)

If we consider A ⊆ ∆m, a subset of the possible predictions of our model g, we could

also use a different aggregating function, such as

CEd = max
µ∈A

[d(r(µ), µ)], (2.12)

depending on the use case.

2.5.1 Empirical Expected Calibration Error

To approximate CE a measure widely used for the weak calibration denoted as the

ECE (Naeini et al., 2015) discretizes the probability interval into bins, assigns each

prediction into a bin and then computes the average difference between the average

confidence and the accuracy per bin weighted by the number of samples in the bin:

ECE =
1

N

B∑
b=1

nb |acc(b)− conf(b)|, (2.13)

where B is the number bins, N is the number of predictions, nb the number of

samples in bin b, acc(b) the average accuracy of bin b and conf(b) the average

confidence in bin b. As discussed in (Vaicenavicius et al., 2019), (2.13) is the CE in

an induced binary problem with the total variation distance(TV) d(x, y) = 1
2
||x−y||1.

This measure corresponds to the definition in (2.6). Note that having 0 ECE does

not imply a good model, as even a coin flip model could have 0 ECE while having a
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Figure 2.c: A reliability diagram of a classifier with 70% accuracy. The model

is slightly overconfident in the high confidence bins, and slightly underconfident

in the medium confidence bins. Image generated from the predictions of a LeNet

architecture (LeCun et al., 1998) trained on a CIFAR-10 (Krizhevsky et al., 2009)

dataset.

50% accuracy, i.e. calibration does not imply accuracy. The possible pitfall of this

metric is the parametrization of the number of bins.

The ECE is nicely visualized using the so-called reliability diagrams. Since for every

data sample we consider only the most confident prediction, we can visualize these

in a histogram, binned by confidences. By definition (2.6), we expect the histogram

to follow the line y = x. We show an example of a reliability diagram in figure 2.c.

2.5.2 Static Calibration Error

As ECE takes into account only the highest confidence per data point, a measure

for the class-wise definition (2.7) was derived as a generalization of ECE. Static

Calibration Error (SCE) (Nixon et al., 2019) was proposed as

SCE =
1

K

K∑
k=1

1

N

B∑
b=1

nbk |acc(b, k)− conf(b, k)|, (2.14)
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where K is the number of classes. It is easy to notice that SCE is just an average

ECE over classes.

2.5.3 Strongest ECE

To measure strong calibration according to definition (2.8), the derivation comes

as an estimate of the basic form of the CE in (2.11). Proposed in (Vaicenavicius

et al., 2019), assume a binning {bi}Bi=1 of ∆m and denote the bin containing a

vector w ∈ ∆m by b[w]. Define the empirical estimate of the calibration function

r̂ : ∆m −→ ∆m ∪ {0} for the y-th class as

r̂(w)(y) =
|{i : g(Xi) ∈ b[w] ∧ Yi = y}|

|{i : g(Xi) ∈ b[w]}| (2.15)

for all w ∈ ∆m and r̂(w) = 0 if the denominator is zero – the bin b[w] is empty.

With this definition, given an observed dataset, as r̂ is a piecewise constant on every

bin bi, we can define r̂i as the strongly calibrated prediction for the bin bi.

Next, for all bins bi we consider the average prediction ĝi and the fraction of the

bin p̂i – the weight, calculated as

ĝi =

∑
j:g(Xj)∈bi

g(Xj)

|{j : g(Xj) ∈ bi}|
and

p̂i =
|{j : g(Xj) ∈ bi}|
|{j : g(Xj) ∈ ∆m}| ,

respectively. Define the estimates as zero if the denominators are zero.

From that, we can define the measure of miscalibration ĈEd in terms of expectancy

given a distance function as

ĈEd =
B∑
i=1

p̂id(r̂i, ĝi) (2.16)

It was also shown in (Vaicenavicius et al., 2019) that this estimator converges to

CEd as the number of bins and the number of data samples grow to infinity (under

some additional assumptions, like Lipschitz continuity).

15



2.5. CALIBRATION MEASURES

2.5.4 Maximum Mean Calibration Error

We also only mention another measure of miscalibration referred to as the Maximum

Mean Calibration Error (MMCE). It is proposed by (Kumar et al., 2018) to tackle

the problem of ECE not being differentiable everywhere. The idea is to calculate

the calibration error using kernels.

2.5.5 Binning options

In practice, one has to discretize the probability simplex into bins, therefore we show

the main hyperparameters of binning options.

Number of bins

Intuitively, the higher the number of bins, the less data per bin and thus the higher

variance of the estimates in each bin.

Data-independant binning

The simplest option of binning is to bin the probability simplex into equal sized bins,

which is also often done in the machine learning literature for binary problems e.g.

(Guo et al., 2017). For one dimension (m = 2), we split the probability interval. For

multiple dimensions (m > 2) we split the probability interval along each dimension

of the simplex, meaning we grow exponentially in the number of dimensions.

Data-dependant binning

Data-dependant binnings allow us to create binnings with desired features such as

the minimum number of samples per bin by thresholding. One way to create a

data-dependant binning is to iteratively choose a splitting dimension that has the

maximal variance and then split this dimension based on a central value method

such as the average or median. This iterates until there are no more dimensions to

split due to the allowed minimal size of the bin. The advantage of this method is

that certain estimators converge faster to the real value, e.g. the calibration function

(2.15) (Nobel, 1996), as the estimators are dependant on the binnings. However,

one is also prone to overfitting.

2.5.6 Comparing calibration error estimates

Taken as an example from (Vaicenavicius et al., 2019), consider two probabilistic

models g and g′ and let ĈEd and ĈE′
d be their estimate of CEd, respectively. The
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common practice would be to compare these two estimates and then based on the

comparison make an inference about the calibration of the model. However, as the

biases of the estimators may differ, this comparison may be unjustified.

Consider a binary classification problem that is clearly separable and has equal prior

probabilities, that is p(Y = 1) = p(Y = 2) = 1/2. A constant model gconst and the

optimal model gopt are calibrated, therefore their expected calibration error is zero.

If we define the estimator ĈETV for only one bin and consider only one input, the

bias of the perfect model will be E[ĈETV ]−CETV = 0. Yet, for the constant model,

this bias will be 1/2 as the expected calibration error is always 1/2. Comparing these

two errors leads us to a wrong conclusion that the constant model is less calibrated

than the perfect model, even though that is not the case here. Hence, one would

have to use a hypothesis testing approach, which accounts for the different biases

and the fact that ĈEd and ĈE′
d are random variables. Consider now the case where

we would have unbiased estimators. Still, the comparison may not be justified if the

estimators for each model have different distributions as they are random variables.

2.5.7 Consistency resampling

Firstly, a resampling technique referred to as consistency resampling (Bröcker &

Smith, 2007) is employed. The idea behind it is to compare a bootstrapped

distribution of ĈEd with a bootstrapped distribution of a perfectly calibrated

predictor ĈE
id

d , which we create by using artificial labels. Let us now illustrate

the process for a binary classification problem.

A single resampling cycle consists of the following steps. Consider our set of

predictions {g(xi)}Ni=1 and the set {zi}Ni=1 of independent uniformly distributed

random variables.

1. Sample with replacement N times from the set {g(xi)}Ni=1, obtaining the proxy

set {ĝ(xi)}Ni=1.

2. Create proxy labels {Ŷi}Ni=1 according to

ŷi =

1 zi < ĝ(xi)

0 otherwise

By definition, the proxy dataset {ĝ(xi), ŷi)}Ni=1 will be calibrated: P(Zi = 1|ĝ(xi)) =

ĝ(xi). This resampling step will be computed Nboot times, creating datasets from
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which we can calculate the estimators ĈEd and approximate ĈE
id

d – the distribution

of the expected calibration error under the assumption that our model is calibrated.

The resampling technique can be generalized to multiclass problems by comparing

zi with the cumulative sum over ĝ(xi).

2.5.8 Hypothesis Testing

As mentioned earlier, one can use the distribution ĈE
id

d obtained via consistency

resampling to perform statistical hypothesis tests. The p-value would be in the

form of P[ĈE
id

d ≥ ĈEd], that is the probability of our estimate of the expected

miscalibration being smaller than the miscalibration error of a calibrated model.

Comparing these probabilities for two different models and the chosen significance

level would allow us to choose a more calibrated model without having to worry

about the different biases of the estimates.

Unfortunately, in practice, we are limited by the power of these statistical test with

the amount of data we can gather. Having error approximations from binning the

probabilities and approximation errors from bootstrapping makes the tests reject

the null hypothesis that the model is calibrated too often (Widmann et al., 2019).

2.6 Methods for calibration

In the literature we found that multiple approaches for calibration are currently

being researched. Approaches differ based on the time of calibration and loss

awareness. Also, one would want the calibration to preserve the accuracy (therefore

only changing the predicted probability so that the ranking stays the same) and to

be data-efficient – little data is available for the calibration and evaluation. Some

approaches try to directly train a calibrated neural network (Kumar et al., 2018),

while others look for an algorithm to calibrate the outputs of the neural network

(Guo et al. 2017; Alexandari et al. 2020; Sahoo et al. 2021; Kull et al. 2019). The

loss awareness is mostly differentiated between tasks, where the 0/1 loss is assumed

and tasks where one tries to calibrate for a set of loss matrices (Zhao et al., 2021).

Here, we provide a short summary of some of the methods.

2.6.1 Recalibrating an uncalibrated Neural Network

Also referred to as post-hoc calibration, takes as it’s input either the predicted logits

or probabilities from a trained model in a semi–supervised or supervised way and

finetunes/transforms them, so that the resulting probabilities will be calibrated.
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One approach is to parametrize the logits, so that the resulting probabilities after

the softmax function become more reliable. Another one is to correct the resulting

probabilities into more reliable probabilities by creating a mapping. These methods

also differ by the optimization criterion, which tends to be NLL and are trained

on a held-out validation/calibration dataset. Figure 2.d visualizes these steps in a

diagram. As mentioned earlier, using NLL is not accounting for a different loss than

0/1. We now review the basic parametrization methods for calibration.

Figure 2.d: The general process of post-hoc calibration. The model is calibrated

after the actual training.

Platt Scaling

Introduced in (Platt et al., 1999) as an improvement for Support Vector Machines,

the Platt Scaling method for a binary probabilistic classifier learns scalar parameters

a, b ∈ R – the calibrated probabilities will take the form of σ(az1 + b).

Temperature Scaling (TS)

Proposed in (Guo et al., 2017), TS was a novel way of calibrating the most confident

predictions. The idea is quite learning a single parameter T ∈ R>0 that we use as

σ(zi/T ). As T −→ ∞ the distribution transforms into a uniform distribution and as

T −→ 0 the probability of the most confident class will be equal to 1. Note that, as

it is a monotonic operation, the accuracy of the model does not change, while the

confidence scores do.

Bias-Corrected Temperature Scaling (BCTS)

In (Alexandari et al., 2020) it was experimentally found that TS does not correct

the systematic bias in the estimates of the priors under the model and therefore

proposed to not only learn the parameter T ∈ R, but also a vector b ∈ Rm so that
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every class has its own bias term, i.e. σ(zi/T + b). This is referred to as BCTS. It

is a simple mutliclass extension of Platt Scaling.

Vector Scaling (VS) / Matrix Scaling (MS)

VS and Matrix Scaling (MS) were introduced as a further extensions of Platt Scaling.

MS takes the form of σ(WTzi +b), where b ∈ Rm,W ∈ Rm,m. VS is a special case

of MS for which the matrix W is a diagonal matrix. Note that for matrix scaling

the number of parameters grows quadratically with the number of classes.

Optimizing NLL instead of ECE?

The standard practice to train these parametrizations is to optimize them with

respect to NLL (Guo et al. 2017; Alexandari et al. 2020). The curious reader

might have asked themselves why should the calibration methods minimizing NLL

improve measures of miscalibration such as ECE? Why not directly optimize ECE,

as though it is not differentiable everywhere, the set of non-differentiable points is of

measure zero. For the full proof, we refer the reader to (DeGroot & Fienberg 1981;

Bröcker 2009; Murphy &Winkler 1987; Gneiting & Raftery 2007, where it is formally

proven why minimizing NLL instead of ECE is perfectly justifiable. In short, NLL

corresponds to a proper scoring rule and therefore is decomposable into parts that

include both uncertainty and reliability. A calibrated predictor’s reliability will be

0. Minimizing NLL with respect to the calibration will decrease the reliability term

therefore minimizing the miscalibration. As a result, we designed a loss function

that corresponds to a proper scoring rule and is based on ERM, allowing us to

minimize miscalibration using the ERM framework.

2.6.2 Training a calibrated Neural Network

In (Kumar et al., 2018) the following is suggested. Given a dataset D, the idea to

train a neural network that is better calibrated is to solve the following:

min
θ

NLL(D, θ) + λCE(D, θ), (2.17)

where θ are the neural networks parameters, NLL is the negative log-likehood, CE

is a calibration error measure and λ is the importance weight of the measure. To

calibrate the strongest prediction score, one could think about using the ECE as the

CE, but with the hopes of not getting numerical instabilities of the non-differentiable
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point. In the paper, the metric MMCE is used. One can later combine this approach

with the recalibration after training approach as well.

2.6.3 Calibrating for decision-makers

Downstream decision-makers use the confidence of the predictions. For that, one

would want distribution calibrated outputs, however as mentioned earlier, these are

hard to achieve, since it requires exponential sample complexity in the number of

classes. This problem lead to a relaxed calibration definition referred to as Decision

Calibration. In simple terms, decision calibrating means to calibrate so that the

risks under the predicted distribution does not differ from the risks under the true

distribution. Note that as decision-makers one tries to incorporate the loss function

into the process, therefore this is a loss aware task. We now provide a formal

definition of this concept.

Bayes Optimal Decision

Consider a finite action space A. Let us now redefine the loss matrix to be

l : Y × A −→ R. This terminology is only defined to fit the decision-making

framework, however could be easily mapped to classification tasks by considering

A = Y . Let p∗(k|x) be the true conditional probability of a sample x ∈ X to be

of class k and p̂(k|x) the predicted ones. We define the Bayes Optimal Decision

strategy q : ∆ −→ A given the predictive conditional probability to be:

ql(p(·|x)) = q(p(·|x)) = argmin
d∈A

∑
k∈Y

p(k|x)l(k, d). (2.18)

Strategies that are Bayes optimal decision strategy with respect to the loss matrix l

will be referred to as ql. Naturally, the definition of the risk of any strategy q comes

up as:

R(q) = E[l(Y, q(p(·|X))]. (2.19)

Trust would not be an issue if the forecaster were able to predict optimal forecasts

(i.e., p̂(X) = p∗(X)), but since this is rarely the case, the forecaster must find

workable strategies to inspire confidence in the decision-makers, which leads to the

following definition.
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Decision Calibration (Zhao et al., 2021)

For any set of loss functions L ⊂ Lall, where Lall = {l : Y × A −→ R} (that is all

loss functions) and a set of strategies Q ⊂ Qall := {q : ∆ −→ A}, we say that a

prediction p̂ is (L;Q)-decision calibrated (with respect to p∗) if ∀l ∈ L and ∀q ∈ Q
it holds that:

EXEŶ∼p̂(·|X)[l(Ŷ , q(p̂(·|X)))] = EXEY∼p∗(·|X)[l(Y, q(p̂(·|X)))]. (2.20)

We refer to the left-hand side part of the equation as the model risk and the right-

hand side as the true risk, reflecting the distributions used by the expectations.

The model risk is the loss that the decision maker computes knowing only the

input features and mimics the loss where the labels are drawn from the predicted

distribution. The true risk is the true loss, without any mimicking. This captures

the idea that the losses and the decision rules are not different between the predicted

and the true distribution.

It is also shown that there exist L ∈ Lall, such that the definition 2.6.3 will coincide

with any of the definitions mentioned in the section 2.4. For more details regarding

the definitions, we encourage the reader to the original paper (Zhao et al., 2021).

Furthermore, L-decision calibration captures a desiderata, one would naturally

expect in valid decision making.

Proposition 1. (No regret, (Zhao et al., 2021)) Let the prediction function p̂ be

(L;Q)-decision calibrated. Let QL be the set of all Bayes Optimal Decision strategies

with respect to loss functions in L, i.e. QL = {ql|l ∈ L}. Then ∀q′ ∈ QL it holds

that:

EXEY∼p∗(·|X)[l(Y, ql(p̂(·|X)))] ≤ EXEY∼p∗(·|X)[l(Y, q
′(p̂(·|X)))].

It states that the Bayes optimal decision for the given loss l is not worse than any

other Bayes optimal decision strategy in ql.

However, as the (L;Q)-decision calibration definition was too general – containing

infinite action spaces – a very similar but stricter definition that assumes a finite

action space was provided.
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2.7 Dataset shift

The joint distribution of inputs Ptrain(x, y) and outputs Ptest(x, y) sometimes varies

between the training and test stages, creating the problematic scenario known as the

dataset shift, i.e: Ptrain(x, y) ̸= Ptest(x, y). Dataset shift occurs in most practical

applications for a variety of reasons, including experimental design bias and the

simple unreplicability of the testing circumstances during training. For instance, in

a language classification assignment, the training data may have been taken in a lab

setting with strict controls, but the test data may have been taken in a setting with

more or less noise, e.g. bad microphone. Further for our purposes, it was shown

that certain dataset shifts can be well estimated if we have calibrated probabilities

(Alexandari et al., 2020).

As a result, this topic gained much attention recently in the research community.

We briefly introduce some of the possible shifts that can occur.

2.7.1 Covariate shift

Covariate shift is defined as a problem for which the following two equations hold:

Ptrain(y|x) = Ptest(y|x)
Ptrain(x) ̸= Ptest(x). (2.21)

This means that the relationship between the dependant and independent variables

does not change, however the distributions of the independent variable changes. As

an example, consider an image classification task where we classify animal types e.g.

whether the image contains a dog or a bear or a cat etc. but the training set will

omit some of the dog breeds in the testing set.

Under covariate shift, model selection techniques like Cross Validation (CV) do not

work optimally, as they require the unbiasedness for the estimation of the score of

CV (Sugiyama et al., 2007).

2.7.2 Prior shift

Prior shift, as the name suggests, is concerned with the change of the prior

probability of the dependant variable, i.e.:

Ptrain(x|y) = Ptest(x|y)
Ptrain(y) ̸= Ptest(y). (2.22)

23



2.7. DATASET SHIFT

The interpretation here is much more obvious. Consider any classification task, but

change the class wise distribution during the training and testing, e.g. dog vs. cat

classification, but while the training dataset is going to have 50% dogs and 50% cats,

the testing dataset is going to have 80% dogs and 20% cats. Further, we later show

calibration can be sustained under the prior shift using importance reweighting.

2.7.3 Concept shift

Concept drift is the last missing piece of the shifts we summarized. Unlike prior

shift or covariate shift, concept drift takes into account the conditional probability.

It includes both

Ptrain(x|y) ̸= Ptest(x|y)
Ptrain(y) = Ptest(y) (2.23)

and

Ptrain(y|x) ̸= Ptest(y|x)
Ptrain(x) = Ptest(x). (2.24)

Easy examples of data that could have concept drifts are time series that are non-

stationary. The usual specific example here is to use profit prediction trained on

the data before the 2008 financial crisis and testing on data after the said crisis,

e.g. 2011. Since the whole socio-economic changed, the relationship between

the independant variable and the dependant variable changed for the testing set.

Calibration does not work here, as the conditional probabilities are not assumes to

be equal. So far, we do not know any means of recovering the predictive probabilities

under the concept shift.

24



Chapter 3

Method

In this chapter we introduce our approach to calibrating with respect to a given loss

matrix. We propose a loss criterion that optimizes for a convex combination of two

different loss matrices. We introduce the loss criterions, derive certain aspects and

further describe their use for prior shift.

3.1 Motivation

Consider a setup, where a decision-maker is given a neural network that has a high

accuracy, however trained using NLL. At test time, the decision-maker is given an

arbitrary loss matrix, based on which the decision-maker will be judged. They will

therefore want to use the Bayes optimal decision rule based on the predictor p̂:

q̂(x) = q(p̂(·|x)) = argmin
d∈A

∑
k∈Y

p̂(k|x)l(k, d), (3.1)

where x ∈ X , p̂(k|x) is the conditional probability for class k as an output from

the neural network and l(k, d) is the new loss matrix assigning a cost for choosing

decision d while x being of class k. As the performance criterion is to minimize the

empirical risk, i.e.

R̂(q̂) =
1

n

n∑
i=1

l(yi, q̂(xi)), (3.2)

we would like to make the model and the calibration procedure to take into account

the new given loss matrix. Consider p̂(k|x; θ) to be the output of the neural network

which was additionally parameterized for the purpose of calibration by θ in a similar
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fashion to either TS, BCTS or VS. We propose the following approach to calibration

– Find the calibration giving the best performance in terms of the risks, which reads

as:

min
θ

1

n

n∑
i=1

l(yi, q(p̂(·|xi; θ)))

s.t. q(p̂(·|x; θ)) = argmin
d∈A

m∑
k∈Y

p̂(k|x; θ)l(k, d).
(3.3)

Unfortunately, this task is a bilevel optimization problem and therefore is strongly

NP-hard (Hansen et al., 1992). As such, we will look for other methods to feasibly

solve this task.

3.2 Analysis of Decision Calibration by Zhao et

al., (2021)

First, we notice that the Decision Calibration of Zhao et al. (2021) is not sufficient

for decision-making. Let us show an example of p̂ that is decision calibrated, but a

distribution calibration achivies a better risk.

Proof. Let the input space consist of only two elements X = {x1, x2}, the action

space be equal to the output space, which has also two classes, i.e. A = Y = {0, 1}.
Now consider the predicted and true conditional probabilities to have these values:

p̂(y = 0|x1) = 0.4, p̂(y = 1|x1) = 0.6, p̂(y = 0|x2) = 0.6, p̂(y = 1|x2) = 0.4,

p∗(y = 0|x1) = 0.6, p∗(y = 1|x1) = 0.4, p∗(y = 0|x2) = 0.8, p∗(y = 1|x2) = 0.2.

(3.4)

Further, let our L = {f}, where f is the 0/1 loss matrix and Q = {qf}, that is the
Bayes Optimal Decision function with respect to the 0/1 loss matrix f . Based on the

0/1 loss, the Bayesian Optimal Decision will be to predict the class with the higher

probability, based on the predictions, meaning q(p̂(·|x1)) = 1 and q(p̂(·|x2)) = 0.

Under these circumstances, the predictor p̂ is (L;Q)-decision calibrated, verified as

follows.
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The risk in the decision calibration definition given p and p′ is calculated for our

example as

EXEY∼p(·|X)[l(Y, q(p
′(·|X)))] =

1

2

(
p(y = 0|x1)(f(0, q(p

′(·|x1))))+

p(y = 1|x1)(f(1, q(p
′(·|x1))))+

p(y = 0|x2)(f(0, q(p
′(·|x2))))+

p(y = 1|x2)(f(1, q(p
′(·|x2))))

)
.

Since we have a 0/1 loss matrix, the model risk is 1
2
(p̂(y = 0|x1)+ p̂(y = 1|x2)) = 0.4

and the true risk is 1
2
(p∗(y = 0|x1) + p∗(y = 1|x2)) = 0.4, proving the predictor is

decision calibrated.

That is because decision calibration uses the predicted probability as the input to

the Bayesian Optimal Decision strategy. If we were to use the true probability in

the decision making, we achieve a risk of 1
2
(p∗(y = 1|x1) + p∗(y = 1|x2)) = 0.3. Not

only do we get a smaller risk, but the strategy also changed under the 0/1 loss.

Having a calibration that would map accordingly, we could achieve that, however

decision calibration does not allow that. In this sense, we would like to redefine the

goal of calibrating for decision making.

Definition 1. Let r : ∆ −→ ∆ be the distribution calibration mapping and p̂ the

probability predictor. The predictor p̂ is considered to be calibrated if the true risk of

the predictor p̂ is equal to the true risk of the recalibrated predictor r(p̂(·|x)), which
reads as:

EXEY∼p∗(·|X)[l(Y, q(p̂(·|X)))] = EXEY∼p∗(·|X)[l(Y, q(r(p̂(·|X))))]. (3.5)

Such predictors will be called truly decision calibrated (true coming from the fact that

this time both the expectations consider the true risk).

Note that the left-hand side will always be greater or equal to the right-hand side, as

the right-hand side uses perfectly calibrated probabilities. Therefore, the difference

between the left-hand side and the right-hand side is a measure of miscalibration.

We further know that minimizing the Empirical Risk using a post-hoc invertible

calibration mapping is equivalent to minimizing this miscalibration (Ho et al., 2022),

see (Gruber & Buettner, 2022) for general equivalence for proper scoring rules. We

will thus look for ways to minimize the Empirical Risk using parametrizations in

order to minizime this miscalibration.
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We can see that a predictor that is decision calibrated by Zhao et al. (2021) is not

necessarily truly decision calibrated, from the previous example. However, neither

does a truly decision calibrated predictor need to be decision calibrated by Zhao

et al. (2021).

Proposition 2. Decision calibration by Zhao et al. (2021) is not necessary for

decision-making.

Proof. Again, consider the 0/1 loss matrix and some distribution calibrated

predictor p∗, which is clearly truly decision calibrated. If we miscalibrate p∗ using

temperature scaling with a randomly chosen T > 0, the predictions do not reorder

(the argmax remains equal), and thus under the 0/1 loss the miscalibrated predictor

stays truly decision calibrated. However, for decision calibrated by Zhao et al.

(2021), the model loss consists of an expectation over the predictions, therefore it

may occur that the predictor is not going to be decision calibrated.

3.3 Direct Loss

For finite action spaces, one can see that the optimization criterion from the bilevel

problem (3.3) is a piecewise constant function, consequently giving us gradients

that are either zero or non-existent. The problem of optimizing piecewise constant

functions was tackled in (Vlastelica et al., 2019). The method proposed is given a

solver, using which one can minimize a piecewise constant function. The solver is

formalized as a mapping that takes an input w and outputs a decision d based on

the criteria:

Solver(w) = argmin
d∈A

wTϕ(d) = argmin
d∈A

∑
k

wkϕk(d), (3.6)

where ϕ : A −→ Rn is an injective mapping of our decisions, e.g. one hot encoding.

We can apply the following mappings to model Bayesian decision strategy:

1. Fix wk as p̂(k|x), then ϕk(d) = l(k, d)

2. Fix ϕ(d) as a one hot encoded vector of decision d, i.e. ϕk(d) equals one if

d equals k and zero otherwise. Then wd,k = p̂(k|x)l(k, d), in other words a

matrix, where in each column indexed by d we have elements p̂(k|x)l(k, d) for
k = 1, 2, . . . ,m.
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Given the solver function and a piecewise constant loss L (in our case equation

the Empirical Risk), in order to optimize our parameters, (Vlastelica et al., 2019)

proposed to use algorithm 1 for calculating the gradient.

Algorithm 1: The general framework for calculating the gradient. (Vlastelica

et al., 2019)

Function Forward(ŵ):
ŷ := Solver(ŵ)

save ŵ and ŷ for backward pass

return ŷ

Function Backward( dL
dϕ(y)

(ϕ(ŷ)), λ):

load ŵ and ŷ from forward pass

w′ := ŵ + λ · dL
dϕ(y)

(ϕ(ŷ)) // nudge the parameters

yλ := Solver(w′) // solve for the nudged parameters

return ∇wfλ(ŵ) := − 1
λ
[ϕ(ŷ)− ϕ(yλ)] // gradient of the continuous

relaxation

Algorithm 2: The algorithm applied to case 1.

Function Forward(p̂(·|x), l):
ŷ := argmind

∑
k p̂(k|x)l(k, d)

save p̂(·|x) and ŷ for backward pass

return ŷ

Function Backward(k∗(the true label), l, λ):

load p̂(·|x) and ŷ from forward pass

p̂(·|x)′ := p̂(·|x) + λ one hot(k∗)

yλ := argmind

∑
k p̂(k|x)′l(k, d)

return ∇p̂(·|x)fλ(p̂(·|x)) := − 1
λ
[l(·, ŷ)− l(·, yλ)]

Mapping algorithm 1 to our cases, we receive the successive algorithms 2, 3, where

one can see that the algorithms return the same values, proving that the two cases

we proposed are equal. The λ ∈ R is a hyperparameter that controls the trade-off

between the amount of information from the gradient and the original function.

In the end, we figured out one can obtain the gradient computed by the algorithm

simply by applying the automatic differentiation to the function that will be referred
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Algorithm 3: The algorithm with the mapping in case 2.

Function Forward(ŵ :=
∑

k p̂(k|x)l(k, ·)):
ŷ := argmind

∑
k p̂(k|x)l(k, ·) one hotk(d)

save ŵ and ŷ for backward pass

return ŷ

Function Backward(k∗, l, λ):

load ŵ and ŷ from forward pass

ŵ′ := ŵ + λ · l(k∗, ·)

yλ := argmind

∑
k(p̂(k|x)l(k, ·) + λ · l(k∗, ·)) one hotk(d)

return

∇p̂(·|x)fλ(p̂(·|x)) := − 1
λ
[one hot(ŷ)T l − one hot(yλ)

T l] = − 1
λ
[l(·, ŷ)− l(·, yλ)]

to as the Direct Loss:

LDirect = −1

λ

∑
i=1

(
min
d

[∑
k

p̂(k|xi)l(k, d)
]
−min

d

[∑
k

p̂(k|xi)l(k, d) + λl(k∗, d)
])

,

(3.7)

where ∓ is paired with ±. It is proven in Theorem 1 of (Song et al., 2016) that for

λ → 0 the gradient of this expression approaches the gradient of teh true risk.

Vlastelica et al. (2019) were encouraging for the use of a λ > 0, however we propose

to use λ < 0, as we show that for all such λ, Direct Loss becomes an upper bound of

the original loss function, which fits into the loss function minimization framework.

3.3.1 Upper/Lower bound proofs for different λ

We adopt similar notations from (Vlastelica et al., 2019) for the proof only. Let

w ∈ W ⊆ RN and y ∈ Y a finite set of labels. Also consider a linear solver

c(w, y) = wTϕ(y), where ϕ(y) is a one-hot encoding of class label y. Define a solver

as a function that maps

w → y(w) such that y(w) = argmin
y∈Y

c(w, y) (3.8)

Consider f(y) to be our piecewise constant function. Then define

fλ(w) = f(yλ(w))−
1

λ

[
c(w, y(w))− c(w, yλ(w))

]
= −1

λ

[
c(w, y(w))− c(w, yλ(w))− λf(yλ(w))

]
(3.9)
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where

yλ(w)) = argmin
y∈Y

{c(w, y) + λf(y)}. (3.10)

Note that equation (3.7) is a special case of (3.9).

Lemma 1. c(w, y) ≥ c(w, y(w)) for every w ∈ W , y ∈ Y .

Proof. Holds trivially from the definition of y(w), as we define it to be the

minimum.

Similarly,

Lemma 2. c(w, y)+λf(y) ≥ c(w, yλ(w))+λf(yλ(w)) for every w ∈ W , y ∈ Y and

λ ∈ R.

Proof. Also hold trivially, this time from the definition of yλ(w).

Theorem 1. For all w ∈ W , if λ > 0, then

fλ(w) ≤ f(y(w)) (3.11)

and if λ < 0, then

fλ(w) ≥ f(y(w)). (3.12)

Proof. We only prove without the loss of generality (3.12) as the proofs are similar.

Let λ < 0. Using Lemma (2) we have for every w ∈ W , y ∈ Y

c(w, y) + λf(y) ≥ c(w, yλ(w)) + λf(yλ(w))

c(w, y(w)) + λf(y(w)) ≥ c(w, yλ(w)) + λf(yλ(w))

(substitute y for y(w))

c(w, y(w))− c(w, yλ(w)) + λf(y(w)) ≥ λf(yλ(w))

1

λ

[
c(w, y(w))− c(w, yλ(w))

]
+ f(y(w)) ≤ f(yλ(w)) (divide by λ < 0)

1

λ

[
c(w, y(w))− c(w, yλ(w))

]
+ f(y(w)) ≤ fλ(w)) +

1

λ

[
c(w, y(w))− c(w, yλ(w))

]
(substitute (3.9))

f(y(w)) ≤ fλ(w).
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We have proven that the piecewise constant function f is less or equal than fλ for

all λ < 0, which is what we wanted to prove. Therefore, using (3.7) with a negative

lambda, we upper bound the empirical risk. However, for very small |λ| values, the
sizes of the margins between the original function and Direct Loss are small, still

allowing for flat regions with zero gradient. We tackle this by using the smooth

minimum function instead of a plain minimum, i.e. minβ(x) = − 1
β
log
∑

k e
−βxk ,

where β is the smoothing parameter. This breaks the upper/lower bound guarantees

but we hypothesize that it is not detrimental for learning. This is visualized later

in figures 4.e and 4.f.

3.4 Integral Loss method

It may be that one would want to calibrate with respect to a set of loss functions,

rather than a single loss function like in definition 1. Let us redefine true decision

calibration as a more general case:

Definition 2. Let r : ∆ −→ ∆ be the distribution calibration mapping and p̂ the

probability predictor. Consider L to a be set of loss matrices. The predictor p̂ is

considered to be calibrated if the true risk of the predictor p̂ is equal to the true risk

of the recalibrated predictor r(p̂(·|x)) for all losses from the set L. This reads as

EXEY∼p∗(·|X)[l(Y, q(p̂(·|X)))] = EXEY∼p∗(·|X)[l(Y, q(r(p̂(·|X))))], ∀l ∈ L. (3.13)

To this end, we focus on a specialized case of true decision calibration for sets

L = {(1 − ϵ)l0 + ϵl1 | ∀ϵ ∈ [0, 1]}, where l0 and l1 are arbitrary loss matrices. In

other words, we specialize on sets L that are made from all loss matrices in the

convex hull of two loss matrices l0 and l1. One clear application of this would

be decision making with a reject option, for which we do not know what the real

reject loss is. Another application could be the case, where we know that a certain

prediction may cost us a value in an interval.

Similarly to the case in definition 1, given a single loss l ∈ L, the difference between
the left-hand side and the right-hand side is a measure of miscalibration. The

integral over all losses l ∈ L is also a measure of miscalibration. Thus, minimizing

this integral miscalibration is equivalent to minimizing the integrated Empirical Risk

over an invertible calibration mapping.

For that, we propose another loss criterion, whose inputs are two loss matrices

and the loss criterion tries to optimize to perform well on average for a convex
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3.4. INTEGRAL LOSS METHOD

combination of the two loss matrices. Therefore, for optimizing the calibration

parameters, we would like to optimize the following:

min
θ

∫ 1

ϵ=0

1

n

n∑
i=1

lϵ(yi, argmin
d∈A

∑
k

p̂θ(k|xi)lϵ(k, d)) dϵ =

min
θ

1

n

n∑
i=1

∫ 1

ϵ=0

lϵ(yi, argmin
d∈A

∑
k

p̂θ(k|xi)lϵ(k, d)) dϵ, (3.14)

where the sum and the integral can be interchanged by Tonelli’s theorem as we

assume lϵ ≥ 0. The θ are the calibration parameters and lϵ = l0 + ϵl1, ϵ ∈ [0, 1].

However, in this form it is not clear that we can use the minimization framework

via gradient descent. We will show that the integral can be computed analytically,

resulting in a differentiable function over p̂θ, hence over θ.

3.4.1 Integral Loss method for 0/1 loss

Let us start by deriving the method for a 0/1 loss matrix with ϵ reject loss, e.g. for

|Y| = 2 and |A| = |Y|+ 1 = 3:

lϵ =

(
0 1 ϵ

1 0 ϵ

)
The number of actions is the number of classes with an addition of the reject option.

We refer to the reject option as dϵ. Clearly, this matrix can be decomposed into two

matrices l0 and l1 such that lϵ = l0 + ϵl1 holds.

Firstly, the term argmind

∑
k p̂θ(k|x)lϵ(k, d) can be simplified. Under the given 0/1

loss function, notice that for every decision d and label k, it holds that:

p̂θ(k|x)lϵ(k, d) =


p̂θ(k|x)ϵ d = dϵ

0 d = k

p̂θ(k|x) otherwise.

From here, one can see that for every decision d, the sum can be factorized

accordingly: ∑
k

p̂θ(k|x)lϵ(k, d) =

ϵ d = dϵ

1− p̂θ(d|x) otherwise.

In other words, we can simplify the term into

argmin(1− p̂(0|x), 1− p̂(1|x), . . . , 1− p̂(Y|x), ϵ).
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3.4. INTEGRAL LOSS METHOD

This turns down into comparing δ := 1 + mink∈Y −p̂(k|x) = 1−maxk p̂θ(k|xi) with

ϵ. If ϵ < δ, then we should choose the reject option, since the loss for rejecting is

lower. Otherwise we choose the class with the highest probability.

∫ 1

0

lϵ(y, argmin
d∈A

∑
k

p̂θ(k|x)lϵ(k, d)) dϵ = (3.15)∫ δ

0

lϵ(y, ϵ) dϵ+

∫ 1

δ

lϵ(y, argmax
k∈Y

p̂θ(k|x)) dϵ = (3.16)[
ϵ2

2

]δ
0

+ Jy ̸= argmax
k∈Y

p̂θ(k|x)K
[
ϵ
]1
δ
= (3.17)

(1−maxk p̂θ(k|x))2
2

+ Jy ̸= argmax
k∈Y

p̂θ(k|x)Kmax
k

p̂θ(k|x). (3.18)

The set where this is not differentiable in θ is of measure zero, as there are

single points that are not differentiable due to the maximum operators and Iverson

brackets.

3.4.2 Integral Loss method for any loss

We now compute Integral Loss for a general L = conv(l0, l1). Restricting the loss to

the 0/1 loss allowed us to derive a nicer form of (3.14) using some simple properties

of the 0/1 loss. Having no assumptions other than non-negativity about the loss

matrix, we have to use other techniques.

Firstly, let lϵ = l0+ ϵl1 for any given l0, l1 and Rϵ(d) =
∑

k p̂(k|x)lϵ(k, d), for a given

decision d. Then it holds that

min
θ

1

n

n∑
i=1

∫ 1

0

lϵ(yi, argmin
d∈A

∑
k

p̂θ(k|xi)lϵ(k, d)) dϵ =

min
θ

1

n

n∑
i=1

∫ 1

0

lϵ(yi, argmin
d∈A

Rϵ(d)) dϵ =

min
θ

1

n

n∑
i=1

∑
d∈A

∫ 1

0

lϵ(yi, d)JRϵ(d) ≤ Rϵ(d
′) ∀d′ ∈ AK dϵ =

min
θ

1

n

n∑
i=1

∑
d∈A

∫ 1

0

(
l0(yi, d) + ϵl1(yi, d)

)
JRϵ(d) ≤ Rϵ(d

′) ∀d′ ∈ AK dϵ, (3.19)

in other words, we sum over all decisions, but the Iverson brackets filter out only the

decision that is for the given ϵ the minimum. The integral is linear in ϵ, therefore
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3.4. INTEGRAL LOSS METHOD

we can factor out l0 and l1. What is left is to analyze the Iverson brackets. Denote

ξ(d) the set of all ϵ for a given decision d, where the Iverson brackets are true, i.e.

ξ(d) = {ϵ ∈ [0, 1] | Rϵ(d) ≤ Rϵ(d
′), ∀d′ ∈ A}. (3.20)

Having this, we can now rewrite (3.19) using the ξ(d) notation as:

min
θ

1

n

n∑
i=1

∑
d∈A

(
l0(yi, d)

∫
ϵ∈ξ(d)

1 dϵ+ l1(yi, d)

∫
ϵ∈ξ(d)

ϵ dϵ
)
. (3.21)

Let us further analyze the ξ(d) set. For a given decision d, the set ξ(d) will contain

all ϵ ∈ [0, 1] that satisfy all of the |A| inequalities. Further, these inequalities will

be satisfied for only certain ϵ – the intersection of ϵ for which all the inequalities are

satisfied, giving us the bounds for the integrals. We dive deeper into the inequalities

in the following way:

Rϵ(d) ≤ Rϵ(d
′), ∀d′ ∈ A

Rϵ(d)−Rϵ(d
′) ≤ 0, ∀d′ ∈ A∑

k

p̂(k|x)lϵ(k, d)−
∑
k

p̂(k|x)lϵ(k, d′) ≤ 0, ∀d′ ∈ A (definition of Rϵ(d))∑
k

p̂(k|x)
(
lϵ(k, d)− lϵ(k, d

′)
)
≤ 0, ∀d′ ∈ A∑

k

p̂(k|x)
(
l0(k, d) + ϵl1(k, d)− l0(k, d

′)− ϵl1(k, d
′)
)
≤ 0, ∀d′ ∈ A∑

k

p̂(k|x)(l0(k, d)− l0(k, d
′)) + ϵ

∑
k

p̂(k|x)(l1(k, d)− l1(k, d
′)) ≤ 0, ∀d′ ∈ A.

(3.22)

Denote

ad′(d) :=
∑
k

p̂(k|x)(l0(k, d)− l0(k, d
′)) (3.23)

bd′(d) :=
∑
k

p̂(k|x)ϵ(l1(k, d)− l1(k, d
′)), (3.24)

then we need to solve

ad′(d) + ϵbd′(d) ≤ 0, ∀d′ ∈ A. (3.25)
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3.4. INTEGRAL LOSS METHOD

From here, we solve for ϵ based on the values of ad′(d), bd′(d). Denote D
−(d), D+(d),

D0(d) the sets of d′, based on the sign of bd′(d), that is

D+(d) = {d′ | bd′(d) > 0} (3.26)

D−(d) = {d′ | bd′(d) < 0} (3.27)

D0(d) = {d′ | bd′(d) = 0}. (3.28)

If bd′(d) > 0, then ϵ ≤ −ad′ (d)
bd′ (d)

. This shows the upper bound (UB) of the integration

range. We want the ϵ that satisfies this inequality for all d′ ∈ A. Similarly, we will

want this for the case where bd′(d) < 0, which will give us the lower bound (LB).

UB(d) = min
d′∈D+

−ad′(d)

bd′(d)
(3.29)

LB(d) = max
d′∈D−

−ad′(d)

bd′(d)
(3.30)

Further, we clamp UB and LB between 0 and 1 to satisfy the ϵ ∈ [0, 1] constraint:

UB(d) = min(max( min
d′∈D+

−ad′(d)

bd′(d)
, 0), 1) (3.31)

LB(d) = min(max(max
d′∈D−

−ad′(d)

bd′(d)
, 0), 1). (3.32)

As for the case where bd′(d) = 0, if there exists a d′ ∈ D0(d) such that ad′(d) > 0, then

the (3.25) is never satisfied and therefore Rϵ(d) will not be the minimum solution,

i.e.

Jvalid(d)K := (1− J∃d′ : bd′(d) = 0 ∧ ad′(d) > 0K). (3.33)

Substituting it all back into (3.21), we get

min
θ

1

n

n∑
i=1

∑
d∈A

(
l0(yi, d)

∫
ϵ∈ξ(d)

1 dϵ+ l1(yi, d)

∫
ϵ∈ξ(d)

ϵ dϵ
)
=

min
θ

1

n

n∑
i=1

∑
d∈A

Jvalid(d)K
(
l0(yi, d) [ϵ]

UB(d)
LB(d) + l1(yi, d)

[
ϵ2

2

]UB(d)

LB(d)

)
. (3.34)

For this, the non-differentiable set by θ is of measure zero. Differentiating by θ will

be involved in every conditional probability, which is in every part, where ad′(d) and
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3.5. CALIBRATION FOR PRIOR SHIFT

bd′(d) is – the Iverson bracket and the lower/upper bounds. The Iverson bracket is a

stepwise characteristic function, having only single non-differentiable points, which

are of measure zero. In the lower/upper bound calculations, min and max operators

are also non-differentiable in single points. Lastly, ad′(d) and bd′(d) are differentiable

as they are simply convex combinations over the possible classes.

The complexity for one pair (x, y) is O(|Y||A|), since we can multiply the

probabilities with all decisions d and d′ and then perform the subtraction, resulting

in a complexity of 2|Y||A| ∈ O(|Y||A|). The naive implementation will lead to a

complexity of O(|Y||A|2).

Comparing Integral Loss to Direct Loss, although we are not capable to optimize for

a specific loss matrix, we got rid of two unclear hyperparameters, λ and β specifically.

For them, we do not know the interval from which to sample for the best results,

and thus we have to opt for timely grid searches.

The function is later visualized and explained in figures 4.e and 4.f.

3.5 Calibration for prior shift

Using our criterions, we can also calibrate for prior shift. Assume we have an

estimate of the prior probability for the target distribution Ptest(y). The task is to

estimate the new conditional probability Ptest(y|x) given the test prior probability.

For prior shift, we assume that Ptest(x|y) = Ptrain(x|y) as described in 2.7.2. From

the Bayes Theorem we know that

P (x|y) = P (y|x)P (x)

P (y)
,

which for different train and test distributions and the prior shift assumption gives

us

Ptest(y|x)Ptest(x)

Ptest(y)
=

Ptrain(y|x)Ptrain(x)

Ptrain(y)
. (3.35)

From there, solving for Ptest(y|x), we get

Ptest(y|x) = Ptrain(y|x)
Ptest(y)

Ptrain(y)

Ptrain(x)

Ptest(x)
∝ Ptrain(y|x)

Ptest(y)

Ptrain(y)
, (3.36)

which will be also used for making decisions under the test prior probabilities. Given

samples from the held-out training distribution, we can estimate the expectation
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3.5. CALIBRATION FOR PRIOR SHIFT

of any function f with respect to the test distribution by adding the importance

weights:

∑
x,y

Ptest(x, y)f(x, y) =
∑
x,y

Ptrain(x, y)
Ptest(y)

Ptrain(y)
f(x, y) = EPtrain(x,y)

[ Ptest(y)

Ptrain(y)
f(x, y)

]
.

The true risk R(q) thus takes the form

R(q) = EPtrain(x,y)

[ Ptest(y)

Ptrain(y)
l(y, q(x))

]
. (3.37)

For completeness, the model risk R̂(q) can also be estimated as

R̂(q) = EPtest(x)

[∑
y

P̂test(y|x)l(y, q(x))
]

=
∑
x

Ptest(x)
[∑

y

P̂train(y|x)
Ptest(y)

Ptrain(y)

Ptrain(x)

Ptest(x)
l(y, q(x))

]
=
∑
x

Ptrain(x)
[∑

y

P̂train(y|x)
Ptest(y)

Ptrain(y)
l(y, q(x))

]
= EPtrain(x)

[∑
y

P̂train(y|x)
Ptest(y)

Ptrain(y)
l(y, q(x))

]
. (3.38)

For our experiments, we will use the equation (3.36) to get the decisions enhanced by

the importance weights on the test set and then use the equation (3.37) to compute

the empirical risk and asses the performance under the prior shift, without having

to resample the dataset according to the new test set distribution.

3.5.1 Using Integral Loss for prior shift

Having shown that in the prior shift case the risks can be easily estimated using

importance sampling, we can create a realistic scenario for which the Integral Loss

could be of use.

Let P ′(y) ̸= Ptrain(y) be another prior distribution. It could happen that the test

prior distribution Ptest(y) is a convex combination of the two, i.e.

Ptest(y) = (1− ϵ)Ptrain(y) + ϵP ′(y), (3.39)

where ϵ ∈ [0, 1], unknown during calibration time. Thus, we would like to calibrate

the probabilities so that it does well on average for any ϵ during test time which is
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3.6. EXPERIMENTAL WORKFLOW OF THE CALIBRATION PROCESS

what the Integral Loss was designed for. Reminding that the basic form of Integral

Loss is:

min
θ

1

n

n∑
i=1

∫ 1

0

lϵ(yi, argmin
d∈A

∑
k

p̂θ(k|xi)lϵ(k, d)) dϵ,

in which we can substitute

lϵ(k, d) :=
Ptest(k)

Ptrain(k)
l(k, d) =

(1− ϵ)Ptrain(k) + ϵP ′(k)

Ptrain(k)
l(k, d).

From here, it is trivial to rewrite the equation in the l0 + ϵl1 form to fit the Integral

Loss framework:

lϵ(k, d) =
(1− ϵ)Ptrain(k) + ϵP ′(k)

Ptrain(k)
l(k, d)

lϵ(k, d) =
Ptrain(k) + ϵ(P ′(k)− Ptrain(k))

Ptrain(k)
l(k, d),

where one can see that:

l0(k, d) =
Ptrain(k)

Ptrain(k)
l(k, d) = l(k, d) (3.40)

l1(k, d) =
P ′(k)− Ptrain(k)

Ptrain(k)
l(k, d). (3.41)

3.6 Experimental workflow of the calibration

process

For our experimental purposes, we employ a slightly different process. Firstly, we

use nested cross validation for each calibration method. That is to choose the correct

hyperparameters first and then to evaluate the calibration method with a confidence

level. We show this overview in figure 3.a.
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3.6. EXPERIMENTAL WORKFLOW OF THE CALIBRATION PROCESS

Figure 3.a: The overview of the workflow we used in our experiments. We performed

nested cross validation for choosing the optimal hyperparameters and for having

confidence intervals for our results.

To explain nested cross validation in detail, we visualize the process in figure 3.b. To

mantain class balance, we use stratified k-fold cross validation. The hyperparameters

are chosen through grid search and the best performing hyperparameters are then

used to fit the calibration method and calibrate the model. The hyperparameters

that we need to choose are

• λ - the linearization parameter of Direct Loss,

• β - the smoothed minimum parameter of Direct Loss,

• learning rate - the learning rate for training the calibration method through

gradient descent.
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Chapter 4

Experiments

This chapter will show some basic analyses and the performance results of our

developed loss criterions. We start with explaining the technical setup that we

used, show how the loss criterions behave in simple one-dimensional experiments

and, lastly, show the performance of the loss criterions on three different situations,

where:

• the loss matrix is known exactly,

• the loss matrix is known as a convex combination of two known matrices,

• the prior shift adaptation for prior distribution is represented as a convex

combination.

In the end of this chapter we provide a discussion of the results.

4.1 Technical setup

To first get a model to calibrate, we either train our own neural networks or take

already trained networks for the given dataset. We chose one artificial dataset and

then two realistic datasets.

4.1.1 CIFAR–100

First, we use a standard image classification dataset, CIFAR–100 (Krizhevsky et al.,

2009), but in the superclass version. The superclass version contains 20 classes,

allowing us to create artificial loss matrices with ease. The dataset is split into

40000 training images, 10000 calibration images and 10000 test images. We use

ResNet32 (He et al., 2016) for the classification task, with a 76% accuracy on the
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4.1. TECHNICAL SETUP

test set. Although we know that there are pretrained models with accuracy 90%

and more, we intentionally keep this model. For this data we wanted to test how

the model’s Empirical Risk improves with calibration to a certain loss and if we had

used too good of a model, the improvement might not be visible easily. The loss

matrices we use are in the form of:

l(y, ŷ) =


0 y = ŷ,

X y ̸= ŷ and y is a dangerous class,

1 otherwise,

where X is chosen to be a high value to simulate the loss of making a wrong decision

during safety-critical applications. We choose the dangerous classes to be 18 and

19, which are vehicle superclasses.

4.1.2 Danish Fungi

The Danish Fungi (Picek et al., 2022) is a fine-grained dataset with a long-

tailed distribution of prior probabilities of the classes. The authors also provide

a pretrained model which we used. We hand annotated 167 of the classes based

on their edibility – deadly poisonous, poisonous, inedible, edible bad, edible, edible

good. We normalized the predicted probabilities so that the output is the probability

of the edibility class. The remapped class distribution is visualized in figure 4.a.

Here, the objective is to then decide whether or not should a cook buy the given

mushroom. With this in mind, we designed the loss matrix as:

Accept Reject

deadly poisonous 10000 0

poisonous 1000 0

inedible 100 0

edible bad 40 0

edible 0 10

edible good 0 20

In this new classification task we achieved a 90% accuracy. We provide some data

examples in figure 4.b. For more information regarding the dataset we refer the

reader to the main paper (Picek et al., 2022).
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deadly_poisonous edible_good inedible edible_bad edible poisonous
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Class distribution of our Fungi dataset

Figure 4.a: The distribution of edibility classes in the remapped Fungi validation +

test set.

Data Examples:

Figure 4.b: Data examples of the Danish Fungi dataset.

4.1.3 Ham10000

The Ham10000 dataset (Tschandl et al., 2018) is a cancer skin lesion image dataset,

examples of the dataset shown in figure 4.c. Using this dataset we design the

experiment to decide whether the patient should be given a treatment or not based

on the prediction of the classifier. The training was performed on 75% of the

data, the rest was used for calibrating (15%) and testing (10%). We design the

loss matrix similarly as in (Zhao et al., 2021), with the added normalization to 0:

no treat treat

akiec 11 0

bcc 11 0

bkl 0 4

df 0 1.5

nv 0 2.5

mel 9.5 0

vasc 0 2
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Data Examples:

Figure 4.c: Data examples of the Ham10000 dataset.

Figure 4.d: The distribution of Ham10000 classes in the validation and test set.

For one experiment we also add a reject option as an ”I do not know” decision

with a constant loss for every class to allow for uncertainty for the model. We used

DenseNet121 (Huang et al., 2017) achieving 90% accuracy on the validation data.

The data distribution of the test and validation set can be seen on figure 4.d.

4.2 Pilot experiments of the loss criterions

We first show the criterions with different parameters on the one-dimensional

probability simplex. Consider a binary classification problem, where the true class

is 1, a 0/1 loss matrix and no reject option. In this problem, we visualize Direct

Loss with λ ∈ −1,−0.1 and no β min smoothing to show the effect of linearization.

As for Integral Loss, we have to opt for a different problem setting, as Integral Loss

cannot be optimized with respect to a single loss matrix. The l0 matrix is the 0/1

loss matrix with a reject option that costs 0 and the l1 matrix is a null matrix with a
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reject option that costs 1. For comparisons, we also include NLL and the Empirical

Risk function. This all is shown in figure 4.e.

Figure 4.e: The loss criterions visualized on a one-dimensional probability simplex

with a 0/1 loss and the true class being 1. Note, that using a negative λ leads to an

upper bound of the Empirical Risk.

In the figure, empirical risk shows loss 1 for all probabilities that are less than 0.5, and

0 otherwise. Direct Loss with λ = −1 shows how the stepwise functions is linearized,

however, the gradients in the probabilities in the interval [0, 0.5] are 0. Direct Loss

with λ = −0.1 shows a steeper linearization, imitating the Empirical Risk function

better, but contains a wider space, where the gradients are uninformative. Integral

Loss has a quadratic curve on both sides of 0.5.

Further, we show the effect of TS on the CIFAR–100 with superclasses dataset with

different optimization criterions. The loss matrix is designed in the following way:

l(y, ŷ) =


0 y = ŷ,

10000 y ̸= ŷ & y ∈ {18, 19}
1 otherwise.

For Integral Loss, we design the l0 and l1 matrices so that l0 + 0.5l1 will sum

into the same loss matrix l. Direct Loss is not β smoothed and λ was set to be

− 1
max(y,d)∈Y×A l(y,d)

= −1e − 05. Further, we also show NLL for comparison and the

Empirical Risk on the test set, to show how well the criterions generalize. The

results are in figure 4.f.
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Figure 4.f: The loss criterions performing on the CIFAR–100 superclass set based

on temperature scaling calibration. Note, that using a negative λ value gives us

an upper bound of the Empirical Risk. We can see that in this experiment, the

best temperature parameter is achieved by Direct Loss and then by Integral Loss.

Optimizing based on the performance on the Empirical Risk we would overfit on the

validation set and perform bad on the test set afterwards.

Here, if any loss criterion would perfectly fit the validation empirical risk, it would

perform bad on the test set, as there is a misclassified example in the test set

by the neural network. Having chosen good enough hyperparameters, Direct Loss

accurately chooses the temperature so that it generalizes well to the test set as well.

Integral loss is more conservative, and NLL is the most conservative. Note that

NLL would be the same for every loss matrix. Furthermore, it can be seen that

both Direct Loss and Integral Loss copy the Empirical Risk curve.

4.3 Loss matrix known exactly

In this section we describe the situation for which we know the exact loss matrix used

during test time, thus we do not include Integral Loss. We perform the experiment

on the Danish Fungi and the Ham10000 datasets. The loss matrices used are as

described in the datasets section. We try the performance of TS, BCTS, VS with

different criterions.
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4.3.1 Danish Fungi

The results for this experiment are shown in the figure 4.g. In this experiment,

our aggregation function is not the mean but the sum, i.e. the Empirical Risk

multiplied by the number of samples to overview what losses from the loss matrix

applied. Further, we create 15 folds in total to asses some confidence to our results.

In this experiment, no calibration performs terribly, BCTS calibration performs the

best, followed by TS and VS lastly. Finally, Direct Loss is outperforming all other

optimization criterions. One would also expect that VS would perform the best, as

it is a generalization of both TS and BCTS, however it seems that it performs the

worst. We hypothesize that it is because of overfitting.

Results

Parametrization Calibration Criterion Test Sum of Losses

No calibration — 2117± 886

TS

NLL

ECE

Direct Loss

944± 32

944± 40

758± 35

BCTS

NLL

ECE

Direct Loss

897± 31

823± 34

730± 31

VS

NLL

ECE

Direct Loss

1416± 649

1095± 70

779± 68

Figure 4.g: The results of the different parametrizations and loss criterions on the

dataset. Results were aggregated from 15 folds and are showing the mean and one

standard deviation.

4.3.2 Ham10000

We perform these experiments similarly as we did with the Danish Fungi dataset.

Aggregated as sum with the given loss matrix, created from 15 validation folds.

For this dataset, we cannot find a clear best performing parametrization nor

criterion, if we consider the standard deviations in. Thus, we further analyze

the difference between the true risk and the model risk for different loss criterions

and parametrizations, which we show in figures 4.i, 4.j and 4.k. Each of these

figures differs by the parametrization parameter, where (a) shows the model risk
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4.4. LOSS MATRIX KNOWN AS A CONVEX COMBINATION OF TWO
MATRICES DURING TEST TIME

distribution and the true/empirical risk distribution, (b) shows the statistical effect

of calibration on the true risk (positive is improvement) and (c) shows the same

effect as (b) but for NLL and Direct Loss.

We notice that the model risk underestimates the true risk, and the goal would be

that the calibration brings these distribution closer together. For BCTS we see that

some folds get farther away and for VS most of the folds get farther and therefore

we hypothesize overfitting. On the other hand, TS puts the distributions closer

together. In (b) and (c) we mostly notice that calibration has a positive effect for

the decision making and there are not many differences in NLL and Direct Loss for

this dataset.

Results

Parametrization Calibration Criterion Test Sum of Losses

No calibration — 145.77± 4.57

TS

NLL

ECE

Direct Loss

151.53± 4.21

150.47± 4.08

150.73± 4.60

BCTS

NLL

ECE

Direct Loss

146.77± 4.3

144.53± 3.97

142.47± 4.71

VS

NLL

ECE

Direct Loss

147.23± 5.24

151.33± 3.18

146.77± 4.68

Figure 4.h: The calibration results for the Ham10000 dataset for different loss

criterions and calibration methods. No statistically significant improvements.

4.4 Loss matrix known as a convex combination

of two matrices during test time

To also assess the performance of Integral Loss, we design experiments for that. In

this task, we know during calibration time that the loss matrix will be a convex

combination of two matrices with a coefficient ϵ which will be told during test time

after the calibration. More specifically, confidence calibration with a reject option is

a convex combination of two matrices or the task where the missing the dangerous

class has a high loss is a convex combination of two matrices. All the experiments

are performed on 5 folds to asses a confidence in the results of all parametrizations
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4.4. LOSS MATRIX KNOWN AS A CONVEX COMBINATION OF TWO
MATRICES DURING TEST TIME

0.0 0.1 0.2 0.3 0.4 0.5

TS

Risk

Emp. risk R∗ (DirectLoss)

Model risk R̂ (DirectLoss)
Emp. risk R∗ (No Calibration)

Model risk R̂ (No Calibration)

(a)

−0.025 0.000 0.025 0.050 0.075
R∗(No Calibration) - R∗(DirectLoss)

measurements
KDE

(b)

−0.10 −0.05 0.00
R∗(NLL) - R∗(DirectLoss)

measurements
KDE

(c)

Figure 4.i: The performance of TS on Ham10000 dataset, showing the model and

true risks before and after calibration. (a) The model risk and true risk compared

with and without calibration. The gap is closer after calibration. (b) The effect of

calibrating with Direct Loss and with no calibration in the true risk. More positive

results mean an improvement, therefore here we see a positive result. (c) Effect of

calibrating with Direct Loss and with NLL in the true risk. Similarly, positive result

are an improvement, here we have are mainly distributed around 0.

and criterions and are visualized as a plot of the dependance of the Empirical Risk

on the test set and the given ϵ. However, due to Direct Losses computational

complexity in terms of hyperparameter tuning, we only computed Direct Loss for

ϵ ∈ [0, 0.25, 0.5, 0.75, 1] (for Direct Loss known during calibration time!).

4.4.1 Confidence calibration on CIFAR–100 superclasses

For this experiment, we use the CIFAR–100 superclass version dataset with the

0/1 loss with a reject option with a loss in the interval [0, 1] unknown during the

calibration time. Integral Loss l0 matrix is the 0/1 loss and l1 matrix has the loss 1

only for the reject option, 0 otherwise. The graphs are shown in figure 4.l for every

parametrization (TS, BCTS, VS).

The performance does not really differ given the parametrization and the loss

criterion besides the ECE for BCTS and VS. We again believe the reason for this

is overfitting with the larger number of parameters. Further, Direct Loss seems to
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4.4. LOSS MATRIX KNOWN AS A CONVEX COMBINATION OF TWO
MATRICES DURING TEST TIME

0.0 0.1 0.2 0.3 0.4 0.5

BCTS

Risk

Emp. risk R∗ (DirectLoss)

Model risk R̂ (DirectLoss)
Emp. risk R∗ (No Calibration)

Model risk R̂ (No Calibration)

(a)

−0.025 0.000 0.025 0.050 0.075
R∗(No Calibration) - R∗(DirectLoss)

measurements
KDE

(b)

−0.05 0.00 0.05
R∗(NLL) - R∗(DirectLoss)

measurements
KDE

(c)

Figure 4.j: The performance of BCTS on Ham10000 dataset, showing the model and

true risks before and after calibration. (a) As we increase the number of parameters,

it sees that the risk gap increases as compared to TS. (b) The effect of calibration

stays positive. (c) Comparing NLL to Direct Loss still gives us no statistically

significant results.

perform better by not a large margin, however, it was trained knowing the test time

ϵ.

4.4.2 Dangerous class loss varies on CIFAR-100 superclasses

Here, we determine how the calibration methods perform on a problem where we do

not know the exact loss for missing the dangerous class, but we know that the loss is

between 100 and 1000. The Integral Loss’ l0 matrix will therefore have the loss 100

for missing the class and l1 will be 900, so that l0 + ϵl1 makes the loss vary between

100 and 1000 based on the ϵ value. The results are in the figure 4.m. We also show

the comparison between different calibration methods for the best performing loss

criterions in figure 4.n.

In terms of the effect of the loss criterions, from the plots it seems that Integral Loss

and NLL outperform the rest. Direct Loss, even though trained with the correct test

time ϵ performs substantially worse than the other loss criterions. Nonetheless, we

see that calibration improves the performance over no calibration. For TS, Integral

Loss is the best performing, but starts getting worse compared to NLL as we increase

the number of parameters. The best performing combination of loss criterion and
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4.4. LOSS MATRIX KNOWN AS A CONVEX COMBINATION OF TWO
MATRICES DURING TEST TIME

0.0 0.1 0.2 0.3 0.4 0.5

VS

Risk

Emp. risk R∗ (DirectLoss)

Model risk R̂ (DirectLoss)
Emp. risk R∗ (No Calibration)

Model risk R̂ (No Calibration)

(a)

−0.050 −0.025 0.000 0.025 0.050 0.075
R∗(No Calibration) - R∗(DirectLoss)

measurements
KDE

(b)
−0.10 −0.05 0.00

R∗(NLL) - R∗(DirectLoss)

measurements
KDE

(c)

Figure 4.k: The performance of VS on Ham10000 dataset, showing the model and

true risks before and after calibration. (a) Having even more parameters than BCTS,

the risk gap looks to be worse than without any calibration. (b) We still see a positive

effect of calibrating in terms of the actual risk. (c) Here as compared to the other

methods, NLL seems to improve the true risk better than Direct Loss.

parametrization is either TS with Integral Loss or VS with NLL, based on the figure

4.n.

4.4.3 Constant unknown loss for the reject option in

Ham10000

Lastly, we designed an experiment that should imitate a real-life situation, where a

downstream task will show uncertainty in its decision making and ask for professional

help. The loss for this will vary, but will be constant with respect to the classes.

This ”I do not know” loss varied between 0 and 9. Results are in figure 4.o.

Noticably, again, as we add parameters, ECE and Integral Loss start performing

worse. Direct Loss tends to be outperformed for all parametrizations, while NLL

performs well on all of them.
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4.4. LOSS MATRIX KNOWN AS A CONVEX COMBINATION OF TWO
MATRICES DURING TEST TIME

Figure 4.l: Performance of different methods on the confidence calibration problem.

NLL and ECE are not aware of the loss. Integral Loss calibrates for L = l0+ϵl1 | ϵ ∈
[0, 1]. Direct Loss calibrates for lϵ = l0 + ϵl1. All methods are tested with Bayes

optimal decision strategy (2.18) with lϵ. The plots visualize the test performance

depending on ϵ.

Figure 4.m: Performance of the different parametrizations on the CIFAR–100

superclass version dataset calibration experiment.
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4.5. PRIOR SHIFT ADAPTATION FOR A TEST PRIOR DISTRIBUTION AS
A CONVEX COMBINATION

Figure 4.n: The comparison of the different calibration methods with the Integral

Loss and the NLL on the CIFAR100 superclass version dataset with varying losses

of missing the dangerous class.

Figure 4.o: The result of different parametrizations on the ham10000 experiment

with varied rejection loss.

4.5 Prior shift adaptation for a test prior

distribution as a convex combination

As the last experiment, we show the performance of the loss criterions and

calibrations for prior shift adaptation. The CIFAR–100 dataset was trained on
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4.6. DISCUSSION

a uniform distribution of priors. We assume that the test time priors are a convex

combination between the uniform distribution and a long tailed distribution, as

described in the subsection 3.5.1. As we are assessing the prior shift performance,

we assume 0/1 loss. We will use 2 different long-tailed distribution, generated as

the normalized power law distribution, i.e.:

p(x) = x−k,

where k ∈ {1, 1.5}. We refer to the prior distribution with k = 1 as LTk1 – the most

common class has a prior probability 28%, and the one with k = 1.5 as LTstronger

– the most common class is more extreme, having a 46% probability. Further, we

sort the classes so that the most common class is the class with the worst accuracy

from the trained model for an easier interpretation of the effect of the prior shift

adaptation, as the class-wise accuracy is affected by the prior shift of the long-tailed

distribution. The experiments are calculated on 10 folds, showing the mean and one

standard deviation. We again, plot the results with respect to ϵ – the strength of

the long-tailed distribution, where with ϵ = 1 the test prior distribution becomes

the long-tailed distribution. Plots are shown in figures 4.p and 4.q.

Clearly, for most of the values of ϵ, any calibration with any parametrization has a

positive effect on the performance for both of the new test priors. Direct Loss, again,

even with the knowledge of the test time ϵ does not outperform NLL or Integral Loss.

On the other hand, our loss criterion Integral Loss does not seem to overfit for the

0/1 loss in any of the parametrizations. Given the standard deviation, we cannot

conclude with certainty which loss criterion performs better.

4.6 Discussion

In the experiments, where the loss matrix is known exactly, we show that in the

Danish Fungi experiment Direct Loss confidently outperforms other loss criterions.

We can also see that using calibration significantly improves the Empirical Risk.

For the Ham10000 experiment, we cannot confidently assess whether any of our loss

criterions perform better or worse than the baselines (ECE, NLL) and neither can

we say whether calibration makes a substantial difference in terms of the Empirical

Risk itself. However, we note that calibration can tighten the gap between the true

and the model risk. We also notice that as we increase the number of parameters,

this gap between the risks widens.

The following experiments, in which we do not know the test time loss matrix exactly,

but can assume that it is a convex combination of two matrices that we know, we
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4.6. DISCUSSION

Figure 4.p: The result of the prior shift for different parametrizations on the LTk1

priors.

Figure 4.q: The result of the prior shift for different parametrizations on the

LTstronger priors.

mainly notice that the as we increase the number of parameters, the performance

tends to become worse, however any calibration is usually better than no calibration.

In this part, NLL tends to dominate in terms of consistency over Integral Loss –

as we increase the number of parameters, the loss does not differ by a lot / does

not worsen. In terms of the Empirical Risk we cannot confidently decide, whether
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4.6. DISCUSSION

Integral Loss performs better than NLL, given the confidence intervals – we find this

interesting as NLL does not take the loss matrix into account, yet their performance

is similar. We observe that Integral Loss tends to not generalize that well as the

number of parameters increase in these cases. Perhaps, this could be improved using

different optimization methods or by using regularizations, etc.

Lastly, in the prior shift adaptation calibration experiments, we find that Integral

Loss happens to perform similarly well to NLL, even with the different calibration

parametrizations. Direct Loss tends to overfit for BCTS and for VS.

In summary, we were capable of designing loss criterions that are on par with NLL

in terms of performance in the tasks that we desgined. We believe, in tasks with

more specialized loss matrices, Direct Loss or Integral Loss will outperform NLL,

just like in the Danish Fungi experiment. We also show that calibrating the model

tends to reduce the Empirical Risk in decision-making.
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Chapter 5

Conclusion

The goal of this thesis was to suggest a way to calibrate the outputs of neural

networks. We further specialized the task to calibrate the outputs for decision

making as multiclass calibration seems to be a very non-trivial task. In addition to

that, we were supposed to try and calibrate the outputs so that they perform well

under a prior shift.

Throughout this thesis, we firstly give the reader the technical background and align

ourselves in the mathematical notation and concepts. Then, we introduce the basic

calibration strategies and methods with the motivations behind them. Lastly, we

go through some dataset shifts that often appear in applications.

Chapter 3 focuses on explaining our thought processes behind the loss criterions that

we proposed. Firstly, we suggest Direct Loss including the forward and backward

algorithms and prove that Direct Loss can become an upper or lower bound of the

Empirical Risk. Afterwards, we propose Integral Loss, another loss criterion that

can be used in similar use cases as Direct Loss. We show the whole derivation

of the method and present how Integral Loss can be used for a certain prior shift

adaptation situation. Finally, we show the workflow of our experimental process.

In the Experiments chapter, we explain the experiments in more detail and present

the results. The experiments include the usage of both of our proposed loss criterions

which are compared to NLL and to the situation where no calibration is made. We

start by showing some pilot experiments with the loss functions proposed to give

the reader some intuition. We proceed with 3 different cases, which are based on

what knowledge is one given during calibration time in terms of the test time loss

matrix. In each of these experiments we try to present the results with some kind

of statistical confidence. We finish by providing a discussion of the results.
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5.1. FUTURE WORK

5.1 Future Work

We hypothesize that the calibration methods with more parameters if optimized

better will improve the performance more significantly using the new criterions.

That is because BCTS and VS are generalizations of TS, which has already improved

the performance in many of the experiments. As the parameters tend to overfit,

perhaps regularization techniques or even different optimization algorithms would

help.

For Integral Loss, one obvious extension is to find ways to create a generalization

for more than just a convex combination of two matrices. Direct Loss would benefit

from decreasing the number of hyperparameter combinations – lowering the need for

the hyperparameters or knowing the range of the hyperparameters could improve

the performance. Further, although there are essentially no restrictions for the loss

matrices, knowing for what loss matrices the different criterions start to deteriorate

would extend the project. This could also outline why or when does NLL perform

better.
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